| Course
Number | PH623 | |--------------------------------|--| | Course credit
(L-T-P-C) | 3-0-0-6 | | Course title | Introduction to general relativity and cosmology | | Learning mode | Offline | | Learning objectives | Understand the basic concepts of general relativity Learn about various eras of our universe since the earliest known time Learn about the standard model of cosmology Know the various experimental or observational methods in cosmology research Introduction to inflationary cosmology, and open research problems | | Course description | This course provides a basic review of general relativity and presents a beginner level introduction to the science of understanding the origin, structure, and evolution of our universe. Based on the introductory text by B. Ryden, this semester-long course is aimed at graduate and undergraduate students with a keen interest in cosmology as a research discipline. | | Course content | Brief review of special theory of relativity, equivalence principle, describing curvature – Riemannian spacetime, generalized coordinates, review of tensor algebra and calculus, metric, Christoffel connections, geodesic equation, metric as a classical field, Reimann curvature tensor, Ricci tensor and scalar, Einstein action, Einstein equations, FRW metric, proper distance; Cosmological observations: dark night sky, isotropy and homogeneity, redshift, cosmic particles, cosmic microwave background – overview of the CMB spectrum, recombination, temperature fluctuations; the standard model of the universe (Λ CDM); Friedmann equation, equation of state, cosmological constant, single component universe – spatially flat, radiation, and matter dominated; cosmological parameters – Hubble constant, deceleration parameter; introduction to dark matter; The inflationary universe: flatness problem, horizon problem, monopole problem, the paradigm of inflation, physics of inflation – example of a scalar field driven inflation, advances of inflation model building, confronting inflation models with observation, primordial gravitational waves. | | Pre-requisites | Classical mechanics Differential equations, PDE, complex algebra | | Learning outcomes | After the successful completion of this course, the students will achieve: Basic understanding of general relativity, and computing covariant derivatives, solving tensor field equations. An overview of the research field of cosmology, and developments in our understanding of the universe over the past 100 years. The knowledge of observational aspects of cosmology, particularly the cosmic microwave background, Expansion rate of the universe, Hubble parameter, etc. Basics of inflationary cosmology, and open problems therein. | | Assessment method | Assignments (A), Paper Presentation (PP), MidSem (MS), EndSem (ES). Internal (A+PP)=40%, MS=30%, ES=30% | | Textbooks
and
references | Introduction to cosmology, B. Ryden, Cambridge Univ. Press, 2016. Modern cosmology, Scott Dodelson, Academic Press, 2003. Spacetime and Geometry: An introduction to general relativity, S. Carroll, Cambridge, 2019. Additional references: Cosmology, D. Baumann, Cambridge, 2022. A first course in general relativity, B. Schutz, Cambridge, 2009. Introduction to Cosmology, J. V. Narlikar, Cambridge Univ Press, 2002. Gravitation and cosmology: Principles and applications of the general theory of relativity, S. Weinberg, Wiley, 1972. |