Dr. Rishav Singh

Dr. Rishav Singh
Assistant Professor
Ph.D., IIT-ISM Dhanbad (2017)
Ph: 06115-233-(8)334
rishav.singh[*AT]iitp.ac.in
Biometrics. Deep Learning, Artificial Intelligence, Computer Vision
Research Areas
  • Biometrics. Deep Learning, Artificial Intelligence, Computer Vision
Professional Experience
  • Infosys Limited – 6 years Bennett University – 2.5 years NIT Delhi – 4 years
Awards & Honours
  • Keynote Speaker and Session Chair at BITCON 2018 Conference, BIT DURG Certificate of Appreciation at MORPHIA, Infosys Limited Cloudera Certified Developer for Apache Hadoop (CCDH version 4 and 5) - a few people from our organization cleared the certification The Java Development with Apache Cassandra - MNDJAV100-FINAL
Member of Professional bodies
  • IEEE Member ACM Member
Books
    • Singh, R., et al., “Animal Biometrics: Techniques and Applications”, 2018, Springer.
Patents
  • A method and system for identifying cattle by combining unique identification of owner and cattle, Application Number 201711032865 – Granted
Publications / Journals
  • JOURNALS

    • Dwivedi, Y.S., Singh, R., Sharma, A.K. and Sharma, A.K., 2024. On the application of explainable AI in optimizing the performance and design of fiber optic SPR sensor. Optical Fiber Technology, 85, p.103801.
    •  
    • Tiwari, H., Dwivedi, Y.S., Singh, R., Kaur, B., Prajapati, Y.K., Krishna, R., Singha, N.S. and Sharma, A.K., 2023. Exploring deep learning models aimed at favorable optimization and enhancement of fiber optic sensor’s performance. IEEE Sensors Journal.
    •  
    • Tiwari, S., Singh, R., Singh, S.K., Kilak, A.S., Alkhayyat, A. and Vidyarthi, A., 2024. Biometrics recognition of newborn: a review. Multimedia Tools and Applications, pp.1‑31.
    •  
    • Kumar, A., Tiwari, H., Singh, R., Singh, A.K. and Singh, S.K., 2024. SLIDE‑Net: A Sequential Modeling Approach with Adaptive Fuzzy C‑Mean Empowered Data Balancing Policy for IDC Detection. IEEE Transactions on Fuzzy Systems.
    •  
    • Y. S. Dwivedi, R. Singh, A. K. Sharma and A. K. Sharma, ”Enhancing the performance of photonic sensor using machine learning approach,” in IEEE Sensors Journal, vol. 23, no. 3, pp. 2320‑2327, 1 Feb.1, 2023, doi: 10.1109/JSEN.2022.3225858.
    •  
    • Bharti, V., Kumar, A., Purohit, V., Singh, R., Singh, A.K. and Singh, S.K., 2023. A label efficient semi self‑supervised learning framework for iot devices in industrial process. IEEE Transactions on Industrial Informatics.
    •  
    • Srivastava, A., Badal, T., Saxena, P., Vidyarthi, A. and Singh, R., 2022. UAV surveillance for violence detection and individual identification. Automated Software Engineering, 29(1), p.28.
    •  
    • Singh, R. et.al. MediSecFed: Private and Secure Medical Image Classification in the Presence of Malicious Clients, in IEEE Transactions on Industrial Informatics, vol. 18, no. 8, pp. 5648‑5657, Aug. 2022, doi: 10.1109/TII.2021.3138919.
    •  
    • Singh, R., Ahmed, T., Singh, R., Udmale, S.S. and Singh, S.K., 2020. Identifying tiny faces in thermal images using transfer learning. Journal of Ambient Intelligence and Humanized Computing, 11, pp.1957‑1966.
    •  
    • Singh, R. et.al. Recognizing human violent action using drone surveillance within real‑time proximity, in Journal of Real‑Time Image Processing, 18, 1851–1863 (2021). https://doi.org/10.1007/s11554‑021‑01171‑2.
    •  
    • Singh, R. et.al. MetaMed: Few‑shot medical image classification using gradient‑based meta‑learning, in Pattern Recognition, Pattern Recognition, 120, p.108111 (2021).
    •  
    • Singh, R. et.al. SeizSClas: An Efficient and Secure Internet of Things Based EEG Classifie, IEEE Internet of Things Journal, (2020), 8(8), pp 6214‑6221
    •  
    • Singh, R. et.al, 2020. Early transportation mode detection using smartphone sensing data, IEEE Sensors Journal, (2021), 21(14), pp 15651 ‑ 15659
    •  
    • Singh, R. et.al, 2020. ”A Cognitive Model to Predict Human Interest in Smart Environments”, Computer Communications, (2020), 161, pp 1‑9
    •  
    • Singh, R. et.al, 2020. ”Imbalanced Breast Cancer Classification Using Transfer Learning”. IEEE/ACM Transactions on Computational Biology and Bioinformatics, (2020), 18(1), pp 83‑93
    •  
    • Singh, R. et.al, “Multi‑fault bearing classification using sensors and ConvNet‑based transfer learning approach.” IEEE Sensors Journal, (2019), 20(3) pp 1433‑1444
    •  
    • Singh, R. et.al, “Identifying Tiny Faces in Thermal Images Using Transfer Learning”, Journal of Ambient Intelligence and Humanized Computing, (2020),11(5), pp 1957‑1966
    •  
    • Singh, R. and Om, H., “(Two‑Dimensional)2 whitening reconstruction for newborn recognition”. Multimedia Tools and Applications (2016). 76(3) pp 3471‑3483
    •  
    • Singh, R. and Om, H., “Illumination Invariant Face Recognition of Newborn Using Single Gallery Image”. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences (2016). 86(3) pp 371‑376
    •  
    • Singh, R. and Om, H., “Newborn face recognition using Deep Convolutional Neural Networks”. Multimedia Tools and Applications (2017). 76(18) pp 19005‑19015.

    CONFERENCE

    • Singh, M. and Singh, R., 2012, December. Load Testing of web frameworks. In 2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing (pp. 592‑596). IEEE.
    •  
    • Singh, R. and Om, H., 2013, December. An overview of face recognition in an unconstrained environment. In 2013 IEEE Second International Conference on Image Information Processing (ICIIP‑2013) (pp. 672‑677). IEEE.
    •  
    • Singh, R. and Om, H., 2016. Pose invariant face Recognition for new born: machine learning approach. In Computational Intelligence in Data Mining—Volume 1: Proceedings of the International Conference on CIDM, 5‑6 December 2015 (pp. 29‑37). Springer India.
    •  
    • Srivastava, A., Badal, T. and Singh, R., 2021, August. Real life violence detection in surveillance videos using spatiotemporal features. In Proceedings of the 2021 Thirteenth International Conference on Contemporary Computing (pp. 262‑266).
    •  
    • Rastogi, V., Srivastava, S., Prakash, C. and Singh, R., 2021. Transfer Learning Based COVID‑19 Patient Classification. In Computer Vision and Image Processing: 5th International Conference, CVIP 2020, Prayagraj, India, December 4‑6, 2020, Revised Selected Papers, Part I 5 (pp. 387‑397). Springer Singapore.