Prof. Tarun Kant

Prof. Tarun Kant
Visiting Professor

PhD (IIT Bombay)

tkant@civil.iitb.ac.in
https://www.civil.iitb.ac.in/~tkant/
Awards & Honours
    • Recipient  of  the  Burmah  Shell Best  Paper  Award  for  a contribution  in the Journal of The Aeronautical 
      Society  of India (1975).
    • Recipient of PARAM Second Prize Award in the category of Scientific & Engineering Applications on 1 April 1995 
      by the C-DAC Awards Committee for the work entitled Parallel Finite Element Based Composite Analysis 
      Package on PARAM
Member of Professional bodies
  • Fellow, The Institution of Engineers 
    Fellow, The Aeronautical Society of India 
    Member, The  Indian  Society  of  Theoretical  &   Applied Mechanics 
    Member, The Indian Society for Technical Education 
    Founder Member, Indian Association for Structural Engineering 
    Founder Member, Indian Association for Computational Mechanics 
    Member, International Association for Computational Mechanics  
    Founder Member, International Society for Computational Engineering and Science 
    Reviewer, International  Journal for Numerical  Methods  in Engineering, Finite Elements in Analysis &  Design, 
    International  Journal  of Solids  and  Structures, Journal of Sound and Vibration, European Journal of Solid 
    Mechanics: A Solids, Communications in Applied Numerical  Methods,  Engineering  Computations:   An 
    International   Journal,   Composites   Engineering, International  Journal for Engineering Analysis  and Design,   
    ASME   Journal   of   Applied   Mechanics, Structural     Engineering   and     Mechanics -  An International 
    Journal, Computational Mechanics, Journal of Partial Differential Equations, SADHANA, Proceedings of INSA,  
    Advances in Civil Engineering – An International Open Access Journal, etc. 
    Executive Committee Member, The Aeronautical Society of India (1985-'86) 
    Hon. Secretary, The Aeronautical Society of India (1986-'94) Bombay Branch) 
    Vice President, The Aeronautical Society of India (1994-'95)   Bombay Branch) 
    Committee Member: Research Council of Structural Engineering Research  Centre,  Madras  (1991-94),  
    Building  and Works  Committee, National Institute  of  Industrial Engineering,  Bombay 1994-present,  VASVIK  
    Awards Selection  Committee (1993-1999, 2011-present), AERB Safety Research Programmes (2000-present), 
    Expert  on  the Selection  Committees  for faculty  appointments  of IITs at Delhi, Guwahati, Kanpur and Madras 
    and universities/NITs at Bombay, Nagpur and Indore. Advisory Board Member of many national and international 
    conferences, Chairman/Member of several AICTE-NBA accreditation committees, Member of many UPSC 
    committees, Member of high powered High Rise committee of Government of Maharashtra (2006-’10), Member 
    of a DST committee, Member of Sectional Committee of Indian Academy of Sciences (2008-present), Member of 
    IUTAM General Assembly, Member of the Promotions and Assessment Committee (PAC), Indian Institute of 
    Science Bangalore (2014-2017), Member of the Sectional Committee of INSA (2012-present), Convenor of the 
    Sectional Committee of INSA (2013-present), Member of Sectional Committee of IASc (2012-2018), Convenor of 
    Sectional Committee of IASc (2016-2018), Chairman of Board of Management of the Physics Department  of 
    Mumbai University (2018- present).  

Books
  • 1. Kant, T. [Editor] (1985), Finite Elements in Computational Mechanics, Vol. 1, Pergamon Press, Oxford (ISBN 0-08
    031682-1). 
     
    2. Kant, T. [Editor] (1985), Finite Elements in Computational Mechanics, Vol. 2, Pergamon Press, Oxford (ISBN 0-08
    031682-2). 
     
    3. Desai, Y., Kant, T. and Mukherjee, A. [Editors] (2000), Advances in Structural Engineering, Quest Publications, 
    Mumbai (ISBN 81-87099-08-9). 
     
    4. Kant, T., Eldho, T.I. and Banerjee, S. [Editors] (2009), Proceedings, 3rd International Congress on Computational 
    Mechanics & Simulation, Department of Civil Engineering, IIT Bombay. 
     
    5. Kant, T. [Editor] (2016), A Special Thematic Issue on Computational Mechanics, Proceedings of the Indian 
    National Science Academy (ProcINSA), Volume 82(2), June 2016, pp. 147-402. 

Publications / Journals
  • 1. Kant, T. and Setlur, A.V. (1973), Computer analysis of clamped-clamped and clamped supported cylindrical shells, 
    Journal of The Aeronautical Society of India 25, 47-55. RECIPIENT of BURMAH SHELL PRIZE Award 
    2. Ramesh, C.K., Kant, T. and Jadhav, V.B. (1974), Elastic analysis of cylindrical pressure vessels with various end 
    closures, International Journal of Pressure Vessels and Piping 2, 143-154. 
    3. Kant, T. (1978), Stress analysis of pressure vessels, Chemical Age of India 29, 319-322. 
    4. Kant, T. and Ramesh, C.K. (1981), Numerical integration of linear boundary value problems in solid mechanics by 
    segmentation method, International Journal for Numerical Methods in Engineering 17, 1233-1256. 
    5. Kant, T. (1981), Numerical analysis of elastic plates with two opposite simply supported ends by segmentation method, 
    Computers and Structures 14, 195-203. 
    6. Kant, T. (1982), Numerical analysis of thick plates, Computer Methods in Applied Mechanics and Engineering 31, 1-18. 
    7. Kant, T., Owen, D.R.J. and Zienkiewicz, O.C. (1982), A refined higher-order Co plate bending element, Computers and 
    Structures 15, 177-183. 
    8. Kant, T. and Hinton, E. (1983), Mindlin plate analysis by segmentation method, ASCE Journal of Engineering Mechanics 
    109, 537-556.
    9. Kant, T. and Kulkarni, P.B. (1986), A Co continuous linear beam/bilinear plate flexure element, Computers and Structures 
    22, 413-425. 
    10. Pandya, B.N. and Kant, T. (1987), A consistent refined theory for flexure of a symmetric laminate, Mechanics Research 
    Communications 14, 107-113. 
    11. Pandya, B.N. and Kant, T. (1988), A refined higher-order generally orthotropic C0 plate bending element, Computers and 
    Structures 28, 119-133. 
    12. Pandya, B.N. and Kant, T. (1988), Flexure analysis of laminated composites using refined higher-order C0 plate bending 
    elements, Computer Methods in Applied Mechanics and Engineering 66, 173-198. 
    13. Kant, T. and Pandya, B.N. (1988), A simple finite element formulation of a higher-order theory for unsymmetrically 
    laminated composite plates, Composite Structures 9, 215-246. 
    14. Kant, T., Ravichandran, R.V., Pandya, B.N. and Mallikarjuna (1988), Finite element transient dynamic analysis of isotropic 
    and fibre-reinforced composite plates using a higher-order theory, Composite Structures 9(4), 319-342. 
    15. Pandya, B.N. and Kant, T. (1988), Finite element stress analysis of laminated composite plates using a higher-order 
    displacement model, Composite Science and Technology 32,137-155. 
    16. Pandya, B.N. and Kant, T. (1988), Higher-order shear deformable theories for flexure of sandwich plates : finite element 
    evaluations, International Journal of Solids and Structures 24(12), 1267-1286. 
    17. Kant, T. and Gupta, A. (1988), A finite element model for a higher-order shear-deformable beam theory, Journal of Sound 
    and Vibration 125(2), 193-202. 
    18. Mallikarjuna and Kant, T. (1988), Dynamics of laminated composite plates with a higher-order theory and finite element 
    discretization, Journal of Sound and Vibration 126(3), 463-475. 
    19. Kant, T. and Manjunatha, B.S. (1988), An unsymmetric FRC laminate C0 finite element model with 12 degrees of freedom 
    per node, Engineering Computations 5(4), 300-308. 
    20. Mallikarjuna and Kant, T. (1989), Free vibration of symmetrically laminated plates using a higher-order theory and finite 
    element technique, International Journal for Numerical Methods in Engineering 28(8), 1875-1889. 
    21. Kant, T. and Mallikarjuna (1989), A higher-order theory for free vibration of unsymmetrically laminated composite and 
    sandwich plates - finite element evaluations, Computers and Structures 32(5), 1125-1132. 
    22. Kant, T. and Mallikarjuna (1989), Vibrations of unsymmetrically laminated plates analyzed by using a higher-order theory 
    with a C0 finite element formulation, Journal of Sound and Vibration 134(1), 1-16. 
    23. Mallikarjuna and Kant, T. (1989), Finite element formulation of a higher-order theory for dynamic response of laminated 
    composite plates, Engineering Computations 6(3), 198-208. 
    24. Kant, T. and Mallikarjuna (1989), Transient dynamics of composite sandwich plates using 4-, 8-, 9-noded isoparametric 
    quadrilateral elements, Finite Elements in Analysis and Design 6, 307-318. 
    25. Kant, T. and Menon, M.P. (1989), Higher-order theories for composite and sandwich cylindrical shells with C0 finite 
    elements, Computers and Structures 33(5), 1191-1204. 
    26. Kant, T. and Manjunatha, B.S. (1989), Refined theories for composite and sandwich beams with C0 finite elements, 
    Computers and Structures 33(3), 755-764. 
    27. Butalia, T.S., Kant, T. and Dixit, V.D. (1990), Performance of Heterosis element for bending of skew rhombic plates, 
    Computers and Structures 34(1), 23-50. 
    28. Singh, R.K., Kant, T. and Kakodkar, A. (1990), Efficient partitioning schemes for fluid-structure interaction problems, 
    Engineering Computations 7(2), 101-115. 
    29. Kant, T. and Manjunatha, B.S. (1990), Higher-order theories for symmetric and unsymmetric fibre reinforced composite 
    beams with C0 finite elements, Finite Elements in Analysis and Design 6, 303-320. 
    30. Kant, T. and Patel, S. (1990), Transient/pseudo-transient finite element small/large deformation analysis of two
    dimensional problems, Computers and Structures 36(3), 421-427. 
    31. Kant, T., Varaiya, J.H. and Arora, C.P. (1990), Finite element transient analysis of composite and sandwich plates based 
    on a refined theory and implicit time integration schemes, Computers and Structures 36(3), 401-420. 
    32. Mallikarjuna and Kant, T. (1990), Analysis of anisotropic composite/sandwich shells using a new displacement model with 
    the super-parametric element, Journal of Structural Engineering 17(3), 91-100. 
    33. Mallikarjuna and Kant, T. (1990), Finite element transient response of composite and sandwich plates with a refined 
    higher-order theory, ASME J. Applied Mechanics 57(4), 1084-1086. 
    34. Kant, T. and Patil, H.S. (1991), Buckling loads of sandwich columns with a higher-order theory, J. Reinforced Plastics and 
    Composites 10(1), 102-109. 
    35. Kant, T. and Menon, M.P. (1991), Estimation of interlaminar stresses in fibre reinforced composite cylindrical shells, 
    Computers and Structures 38(2), 131-147. 
    36. Singh, R.K., Kant, T. and Kakodkar, A. (1991), Coupled shell-fluid interaction problems with degenerate shell and three 
    dimensional fluid elements, Computers and Structures (Elsevier) 38(5/6), 515-528. 
    37. Kant, T. and Mallikarjuna (1991), Nonlinear dynamics of laminated plates with a higher-order theory and C0 finite 
    elements, International Journal of Non-Linear Mechanics (Elsevier) 26(3/4), 335-343. 
    38. Kant, T. and Marur, S.R. (1991), A comparative study of C1 and C0 elements for linear and nonlinear transient dynamics 
    of building frames, Computers and Structures 40(3), 659-676. 
    39. Singh, R.K., Kant, T. and Kakodkar, A. (1991), Three-dimensional transient analysis of a single submerged cylindrical 
    shell, Engineering Computations 8(3), 195-213. 
    40. Mallikarjuna and Kant, T. (1991), Dynamics of fibre reinforced unsymmetrically laminated composite-sandwich plates 
    using a refined theory with C0 finite elements, Journal of Structural Engineering 18(3), 89-98. 
    41. Mallikarjuna and Kant, T. (1992), A general fibre reinforced composite shell element based on a refined shear deformation 
    theory, Computers and Structures 42(3), 381-388. 
    42. Singh, R.K., Kant, T. and Kakodkar, A. (1992), Three-dimensional transient analysis of two coupled submerged cylindrical 
    shells, Engineering Computations 9, 39-48. 
    43. Mallikarjuna, Kant, T. and Fafard, M. (1992), Transient response of isotropic, orthotropic and anisotropic composite
    sandwich shells with the superparametric element, Finite Elements in Analysis and Design 12, 63- 73. 
    44. Manjunatha, B.S. and Kant, T. (1992), A comparison of 9 and 16 node quadrilateral elements based on higher-order 
    laminate theories for estimation of transverse stresses, J. Reinforced Plastics and Composites 11, 968-1002. 
    45. Kant, T. and Kommineni, J.R. (1992), Geometrically non-linear analysis of doubly curved laminated and sandwich fibre 
    reinforced composite shells with a higher order theory and C0 finite elements, Journal of Reinforced Plastics and 
    Composites 11, 1048-1076. 
    46. Kant, T., Arora, C.P. and Varaiya, J.H. (1992), Finite element transient analysis of composite and sandwich plates based 
    on a refined theory and mode superposition method, Composite Structures 22, 109-120. 
    47. Kant, T. and Kommineni, J.R. (1992), C0 finite element geometrically nonlinear analysis of fibre reinforced composite and 
    sandwich laminates based on a higher-order theory, Computers and Structures 45(3), 511-520. 
    48. Mallikarjuna and Kant, T. (1992), Effect of cross-sectional warping of anisotropic sandwich laminates due to dynamic 
    loads using a refined theory and C0 finite elements, International Journal for Numerical Methods in Engineering 35(10), 
    2031-2047. 
    49. Kant, T. and Kommineni, J.R. (1993), Pseudo-transient large-deflection elastic analysis of fibre reinforced composite 
    plates, Engineering Computations 10, 159-173. 
    50. Manjunatha, B.S. and Kant, T. (1993), New theories for symmetric/ unsymmetric composite and sandwich beams with C0 
    finite elements, Composite Structures 23(1), 61-73. 
    51. Manjunatha, B.S. and Kant, T. (1993), Different numerical techniques for the estimation of multiaxial stresses in 
    symmetric/ unsymmetric composite and sandwich beams with refined theories, Journal of Reinforced Plastics and 
    Composites 12, 2-37. 
    52. Kommineni, J.R. and Kant, T. (1993), Pseudo-transient analysis of composite shells including geometric and material 
    non-linearities, Journal of Reinforced Plastics and Composites 12, 101-126. 
    53. Kant, T. and Menon, M.P. (1993), A finite element-difference computational model for stress analysis of layered 
    composite cylindrical shells, Finite Elements in Analysis and Design 14, 55-71. 
    54. Kommineni, J.R. and Kant, T. (1993), Geometrically non-linear transient C0 finite element analysis of composite and 
    sandwich plates with a refined theory, Structural Engineering and Mechanics 1(1), 87-102. 
    55. Kommineni, J.R. and Kant, T. (1993), Large deflection elastic and in-elastic transient analyses of composite and sandwich 
    plates with a refined theory, Journal of Reinforced Plastics and Composites 12(11), 1150-1170. 
    56. Manjunatha, B.S. and Kant, T. (1993), On evaluation of transverse stresses in layered symmetric composite and 
    sandwich laminates under flexure, Engineering Computations 10(6), 499-518. 
    57. Mallikarjuna and Kant, T. (1993), A critical review and some results of recently developed refined theories of fibre
    reinforced laminated composites and sandwiches, Composite Structures 24, 293-312. 
    58. Kant, T. and Kommineni, J.R. (1994), Large deflection inelastic pseudo-transient analysis of laminated composite plates, 
    International Journal for Numerical Methods in Engineering 37, 37-48. 
    59. Kant, T. and Kommineni, J.R. (1994), Geometrically non-linear analysis of symmetrically laminated composite and 
    sandwich shells with a higher order theory and C0 finite elements, Composite Structures 27, 403-418. 
    60. Kant, T. and Khare, R.K. (1994), Finite Element thermal stress analysis of composite laminates using a higher-order 
    theory, Journal of Thermal Stresses 17, 229-255. 
    61. Kant, T. and Kommineni, J.R. (1994), Large amplitude free vibration analysis of cross-ply composite and sandwich 
    laminates with a refined theory C0 finite elements, Computers and Structures 50(1), 123-134. 
    62. Kant, T., Kumar, S. and Singh, U.P. (1994), Shell dynamics with three-dimensional degenerate finite elements, 
    Computers and Structures 50(1), 135-146. 
    63. Kant, T. and Kommineni, J.R. (1994), Nonlinear analysis of angle-ply composite and sandwich laminates, ASCE Journal 
    of Aerospace Engineering 7(3), 342-352. 
    64. Kant, T. and Manjunatha, B.S. (1994), On accurate estimation of transverse stresses in multilayer laminates, Computers 
    and Structures 50(3), 351- 365. 
    65. Marur, S.R. and Kant, T. (1994), A stress correction procedure for the analysis of inelastic frames under transient dynamic 
    loads, Computers and Structures 50(5), 603-613. 
    66. Marur, S.R. and Kant, T. (1994), A modified form of the central difference predictor scheme for damped nonlinear 
    systems, Computers and Structures 50(5), 615-618. 
    67. Kant, T. and Kommineni, J.R. (1994), Geometrically nonlinear pseudo-transient analysis of laminated composite shells, 
    Journal of Structural Engineering 21(1), 37-48. 
    68. Kant, T. and Kommineni, J.R. (1994), Geometrically non-linear transient analysis of laminated composite and sandwich 
    shells with a refined theory and C0 finite elements, Computers and Structures 52(6), 1243-1259. 
    69. Kommineni, J.R. and Kant. (1995), Pseudo transient large deflection analysis of composite and sandwich shells with a 
    refined theory, Computer Methods in Applied Mechanics and Engineering 123, 1-13. 
    70. Marur, S.R. and Kant, T. (1996), Free vibration analysis of fiber reinforced composite beams using higher order theories 
    and finite element modelling, Journal of Sound and Vibration 194(3), 337-351. 
    71. Marur, S.R. and Kant, T. (1997), On the performance of higher-order theories for transient dynamic analysis of sandwich 
    and composite beams, Computers and Structures 65(5), 741-759. 
    72. Kant, T. and Khare, R.K. (1997), A higher-order facet quadrilateral composite shell element, International Journal for 
    Numerical Methods in Engineering 40, 4477-4499. 
    73. Kant, T., Marur, S.R. and Rao, G.S. (1998), Analytical solution to the dynamic analysis of laminated beams using higher 
    order refined theory, Composite Structures 40(1), 1-9. 
    74. Goswami, S. and Kant, T. (1998), Shape control of intelligent composite stiffened structures using piezoelectric materials
    A finite element approach, Journal of Reinforced Plastics and Composites 17(5), 446-461. 
    75. Marur, S.R. and Kant, T. (1998), A higher order finite element model for the vibration analysis of laminated beams, ASME 
    Journal of Vibration and Acoustics 120(3), 822-824. 
    76. Marur, S.R. and Kant, T. (1998), Transient dynamics of laminated beams: an evaluation with a higher-order theory, 
    Composite Structures 41(1),1-11. 
    77. Babu, C.S. and Kant, T. (1998), Enhanced elastic buckling loads of composite plates with tailored thermal residual 
    stresses, ASME J. Appl. Mech. 65(4), 1070-1071. 
    78. Mukherjee, A., Ramana, V.P.V., Kant, T., Dutta, P.K. and Desai, Y.M. (1998), Behavior of concrete columns confined by 
    fiber composites, ASCE J. Structural Engineering 124(9), 1094-1095. 
    79. Goswami, S. and Kant, T. (1998), Active vibration control of intelligent stiffened laminates using smart piezoelectric 
    materials by the finite element method, Journal of Reinforced Plastics and Composites 17(16), 1472-1493. 
    80. Babu, C.S. and Kant, T. (1999), Two shear deformable finite element models for buckling analysis of skew fibre-reinforced 
    composite and sandwich panels, Composite Structures (Elsevier) 46(2), 115-124. 
    81. Shah, M.S. and Kant, T. (1999), Finite element analysis of fibre reinforced polymer shells using higher-order shear 
    deformation theories on parallel distributed memory machines, Int. J. Computer Applications in Technology 12(2/3/4/5), 
    206-210. 
    82.  Goswami, S. and Kant, T. (1999), Large amplitude vibration of polymer composite stiffened laminates by finite element 
    method, Journal of Reinforced Plastics and Composites 18(5), 421-436. 
    83. Babu, C.S. and Kant, T. (2000), Refined higher-order finite element models for thermal buckling of composite laminates 
    and sandwich plates, J. Thermal Stresses 23(2), 111-130. 
    84. Kant, T. and Swaminathan, K. (2000), Estimation of transverse/ interlaminar stresses in laminated composites-a selective 
    review and survey of current developments, Composite Structures (Elsevier) 49, 65-75. 
    85. Kant, T. and Babu, C.S. (2000), Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using 
    shear deformable finite element models, Composite Structures (Elsevier) 49, 77-85. 
    86. Ramana, V.P.V., Kant, T., Morton, S.E., Dutta, P.K., Mukherjee, A. and Desai, Y.M. (2000), Behavior of CFRPC 
    strengthened reinforced concrete beams with varying degrees of strengthening, Composites: Part B (Elsevier) 31, 461
    470. 
    87. Kant, T. and Swaminathan, K. (2000), Analytical solutions using a higher order refined theory for the stability analysis of 
    laminated composite and sandwich plates, Structural Engineering and Mechanics: An International Journal 10(4), 337
    357. 
    88. Chitnis, M.R., Desai, Y.M. and Kant, T. (2000), Edge vibrations in composite laminated sandwich plates by using a higher 
    order displacement based theory, Journal of Sound and Vibration 238(5), 791-807. 
    89. Kant, T. and Swaminathan, K. (2001), Free vibration of isotropic, orthotropic, and multilayer plates based on higher order 
    refined theories, Journal of Sound and Vibration 241(2), 319-327. 
    90. Kant, T. and Swaminathan, K (2001), Analytical solutions for free vibration of laminated composite and sandwich plates 
    based on a higher-order refined theory, Composite Structures 53, 73-85. 
    91. Kant, T. and Swaminathan, K. (2002), Analytical solutions for the static analysis of laminated composite and sandwich 
    plates based on a higher order refined theory, Composite Structures 56, 329-344. 
    92. Kant, T. and Gadgil, M.G. (2002), Analysis of orthotropic plates based on three theories by segmentation method, 
    Mechanics of Advanced Materials and Structures 9(3), 189-239. 
    93. Khare, R.K., Kant, T. and Garg, A.K. (2003), Closed-form thermo-mechanical solutions of higher-order theories of cross
    ply laminated shallow shells, Composite Structures (Elsevier) 59(3), 313-340. 
    94. Kulkarni, S.C., Desai, Y.M., Kant, T., Reddy, G.R., Parulekar, Y. and Vaze, K.K. (2003), Uniaxial and biaxial ratchetting 
    study of SA333 Gr.6 steel at room temperature, International Journal of Pressure Vessels and Piping (Elsevier) 80, 179
    185. 
    95. Chitnis, M.R., Desai, Y.M., Shah, A.H. and Kant, T. (2003), Comparisons of displacement-based theories for waves and 
    vibrations in laminated and sandwich composite plates, Journal of Sound and Vibration (Elsevier) 263, 617-642. 
    96. Chitnis, M.R., Desai, Y.M. and Kant, T. (2003), Scattering of waves in laminated composite plates, Advances in Vibration 
    Engineering 2(3), 245-258. 
    97. Khare, R.K., Kant, T. and Garg, A.K. (2004), Free vibration of composite and sandwich laminates with a higher-order facet 
    shell element, Composite Structures (Elsevier) 65 (3-4), 405-418. 
    98. Kulkarni, S.C., Desai, Y.M., Kant, T., Reddy, G.R., Prasad, P., Vaze, K.K. and Gupta, C. (2004), Uniaxial and biaxial 
    ratcheting in piping materials – experiments and analysis, International Journal of Pressure Vessels and Piping (Elsevier) 
    81(7), 609-617. 
    99. Chitnis, M.R., Desai, Y.M., Shah, A.H. and Kant, T. (2005), Elastodynamic Green’s function for reinforced concrete 
    beams, International Journal of Solids and Structures (Elsevier) 42(15), 4414-4435. 
    100. Khare, R.K., Garg, A.K. and Kant, T. (2005), Free vibration of sandwich laminates with two higher-order shear deformable 
    facet shell element models, Journal of Sandwich Structures and Materials 7(3), 221-244. 
    101. Garg, A.K., Khare, R.K. and Kant, T. (2006), Free vibration of skew fiber-reinforced composite and sandwich laminates 
    using a shear deformable finite element model, Journal of Sandwich Structures and Materials 8(1), 33-53. 
    102. Garg, A.K., Khare, R.K. and Kant, T. (2006), Higher-order closed-form solutions for free vibration of laminated composite 
    and sandwich shells, Journal of Sandwich Structures and Materials 8(2), 95-124. 
    103. Garg, A.K., Khare, R.K. and Kant, T. (2006), Higher-order closed-form solutions for free vibration of laminated composite 
    and sandwich shells, Journal of Sandwich Structures and Materials 8(3), 205-235. 
    104. Pendhari, S.S., Kant, T. and Desai, Y.M. (2006), Non-linear analysis of reinforced concrete beams strengthened with 
    polymer composites, Structural Engineering and Mechanics- An International Journal 24(1), 1-18. 
    105. Marur, S.R. and Kant, T. (2007), On the angle ply higher order beam vibrations, Computational Mechanics 40, 25-33. 
    106. Khante, S.N., Rode, V. and Kant, T. (2007), Nonlinear transient dynamic response of damped plates using a higher order 
    shear deformation theory, Nonlinear Dynamics 47, 389-403. 
    107. Kant, T., Pendhari, S.S. and Desai, Y.M. (2007), A general partial discretization methodology for interlaminar stress 
    computation in composite laminates, Computer Modeling in Engineering & Science 17(2), 135-161. 
    108. Kant, T., Pendhari, S.S. and Desai, Y.M. (2007), On accurate stress analysis of composite and sandwich narrow beams, 
    International Journal for Computational Methods in Engineering Science and Mechanics 8(3), 165-177. 
    109. Kant, T., Pendhari, S.S. and Desai, Y.M. (2007), A new partial finite element model for statics of sandwich plates, Journal 
    of Sandwich Structures and Materials 9(5), 487-520. 
    110. Kant, T., Pendhari S.S. and Desai Y.M. (2007), A novel finite element-numerical integration model for composite 
    laminates supported on opposite edges, ASME Journal of Applied Mechanics 74, 1114-1124.  
    111. Kant, T., Pendhari, S.S. and Desai, Y.M. (2007), Two dimensional stress analyses of laminates under thermal load, 
    Proceeding of the Indian National Science Academy 73(3), 137-145. 
    112. Kant, T., Desai Y.M. and Pendhari, S.S. (2008), Stress analyses of laminates under cylindrical bending, Communications 
    in Numerical Methods in Engineering 24, 15-32.  
    113. Kant T., Gupta, A.B., Pendhari, S.S. and Desai, Y.M. (2008), Elasticity solution of cross-ply composite and sandwich 
    plates, Composite Structures 83, 13-24. 
    114. Kant, T., Pendhari, S.S. and Desai, Y.M. (2008), An efficient semi-analytical model for composite and sandwich plates 
    subjected to thermal load, Journal of Thermal Stresses 31, 77-103. 
    115. Marur, S.R. and Kant, T. (2008), Free vibration of higher-order sandwich and composite arches, Part I: Formulation, 
    Journal of Sound and Vibration 310, 91-109. 
    116. Marur, S.R. and Kant, T. (2008), Free vibration of higher-order sandwich and composite arches, Part II: Frequency 
    spectra analysis, Journal of Sound and Vibration 310, 110-133. 
    117. Pendhari, S.S., Kant, T. and Desai, Y.M. (2008), Application of composite materials in civil engineering: A general review, 
    Composite Structures 84(2), 114-124. 
    118. Kant, T. and Shiyekar, S.M. (2008), Cylindrical bending of piezoelectric laminates with a higher order shear and normal 
    deformation theory, Computers and Structures 86, 1594-1603. 
    119. Kant, T., Pendhari, S.S. and Desai, Y.M. (2008), A new partial discretization methodology for narrow composite beams 
    under plane stress condition, International Journal of Computational Methods 5(3), 381-401. 
    120. Garg, A.K., Khare, R.K. and Kant, T. (2008), Free vibration of laminated composite and sandwich folded plates using a 
    higher-order shear deformable finite element model, CSVTU Research Journal 1(2), 22-33. 
    121. Marur, S.R. and Kant, T. (2009), On the flexural analysis of sandwich and composite arches through an isoparametric 
    higher-order model, ASCE Journal of Engineering Mechanics 135(7), 614-631. 
    122. Shiyekar, S.M. and Kant, T. (2010), An electromechanical higher order model for piezoelectric functionally graded plates, 
    International Journal of Mechanics and Materials in Design 6(2), 163-174. 
    123. Pendhari, S.S., Kant, T., Desai, Y.M. and Subbaiah, C.V. (2010), On deformation of functionally graded narrow beams 
    under transverse loads, International Journal of Mechanics and Materials in Design 6(3), 269-282. 
    124.  Kant, T. and Desai, P. (2010), Two-dimensional axisymmetric electromechanical response of piezoelectric, functionally 
    graded and layered composite cylinders, Journal of Solid Mechanics 2(4), 403-417. 
    125. Marur, S.R. and Kant, T. (2011), Transient dynamic analysis of higher order sandwich and composite arches, Composite 
    Structures 93(4), 1201-1216. 
    126. Desai, P. and Kant, T. (2011), On accurate stress determination in laminated finite length cylinders subjected to thermo 
    elastic load, International Journal of Mechanics and Solids (IJM&S) 6(1), 7-26. 
    127. Kant, T. and Deasi, P. (2011), On numerical analysis of finite length cylinders under pressure: An elastostatic 
    computational approach, International Journal of Applied Computational Science and Mathematics 1(1), 1-22. 
    128. Shiyekar, S.M. and Kant, T. (2011), Higher order shear deformation effects on analysis of laminates with piezoelectric 
    fibre reinforced composite actuators, Composite Structures 93, 3252-3261. 
    129. Desai, P. and Kant, T. (2011), Stress analysis of finite length cylinders of layered media, Applied and Computational 
    Mechanics 5(2), 129-142. 
    130. Desai, P. and Kant, T. (2012), A mixed semi analytical solution for functionally graded (FG) finite length cylinders of 
    orthotropic materials subjected to thermal load, International Journal of Mechanics and Materials in Design 8(1), 89-100. 
    131. Pendhari, S.S., Kant, T., Desai, Y.M. and Venkata Subbaiah, C. (2012), Static solutions for functionally graded simply 
    supported plates, International Journal of Mechanics and Materials in Design 8(1), 51-69.  
    132. Desai, P. and Kant, T. (2012), Accurate stresses in laminated piezoelectric finite length cylinders subjected to electro
    thermo-mechanical loadings, Current Science 102(1), 50-60. 
    133. Jha, D.K., Kant, T. and Singh, R.K. (2012), Higher order shear and normal deformation theory for natural frequency of 
    functionally graded rectangular plates, Nuclear Engineering and Design 250, 8-13. 
    134. Desai, P. and Kant, T. (2012), Accurate numerical modeling for functionally graded (FG) cylinders of finite length 
    subjected to thermo mechanical load, Journal of Structural Engineering 39(3), 277-290. 
    135. Kant, T. and Shiyekar, S.M. (2013), An assessment of a higher order theory for composite laminates subjected to thermal 
    gradient, Composite Structures 96, 698-707. 
    136. Jha, D.K., Kant, T. and Singh, R.K. (2013), Free vibration response of functionally graded thick plates with shear and 
    normal deformations effects, Composite Structures 96, 799-823. 
    137. Jha, D.K., Kant, T. and Singh, R.K. (2013), A critical review of recent research on functionally graded plates, Composite 
    Structures 96, 833-849. 
    138. Jha, D.K., Kant, T. and Singh, R.K., (2013), Free vibration of functionally graded plates with a higher order shear and 
    normal deformation theory, International Journal of Structural Stability and Dynamics 13(1), 1350004:1-26 . 
    139. Desai, P. and Kant, T. (2013), On numerical analysis of composite and laminated cylinders of finite length subjected to 
    partially distributed load, International Journal of Pressure Vessels and Piping 111-112, 321-330. 
    140. Kant, T., Tripathi, R.K. and Rode, V. (2013), Elastic-plastic behavior of thick plates with a higher-order shear deformation 
    theory, Proceedings of the Indian National Science Academy 79(4), 563-574. 
    141. Jha, D.K. Kant, T. and Singh, R.K. (2013), Stress analysis of transversely loaded functionally graded plates with a higher 
    order shear and normal deformation theory, ASCE Journal of Engineering Mechanics 139(12), 1663-1680. 
    142. Jha, D.K., Kant, T., Srinivas, K. and Singh, R.K. (2013), An accurate higher order displacement model with shear and 
    normal deformations effects for functionally graded plates, Fusion Eng. Des. 96, 799-823.  
    143. Kant, T., Jha, D.K. and Singh, R.K. (2014), A higher-order shear and normal deformation functionally graded plate model: 
    some recent results, Acta Mechanica 225(7), 2865-2876.  
    144. Jha, D.K., Kant, T., Srinivas, K. and Singh, R.K. (2014), An accurate two-dimensional theory for deformation and stress 
    analyses of functionally graded thick plates, International Journal of Advanced Structural Engineering (IJASE) 6(2), 1-11. 
    145. Jha, D.K., Srinivas, K., Kant, T. and Singh, R.K. (2014), Assessment of Higher Order Shear and Normal Deformations 
    Theories for Stress Analysis and Free Vibration of Functionally Graded Plates, BARC Newsletter, Issue No. 340, 13-21.  
    146. Reddy, K.S.K. and Kant, T. (2014), Three dimensional elasticity solution for free vibrations of exponentially graded plates, 
    ASCE Journal of Engineering Mechanics 140, 1-7. 
    147. Desai, P. and Kant, T. (2015), On numerical analysis of axisymmetric thick cylindrical shells based on higher order shell 
    theories by segmentation method, Journal of Sandwich Structures and Materials 17(2) (2015) 130-169. 
    148. Kosteski, L.E., Riera, J.D., Iturrioz, I., Singh, R.K. and Kant, T. (2015), Analysis of reinforced concrete plates subjected to 
    impact employing the truss-like discrete element method, Fatigue & Fracture of Engineering Materials & Structures 
    (FFEMS) 38(3) (2015): 276-289. 
    149. Kosteski, L.E., Riera, J.D., Iturrioz, I., Singh, R.K. and Kant, T. (2015), DEM based assessment of empirical formulas for 
    prediction of the effects of projectile impact on concrete structures, Fatigue & Fracture of Engineering Materials & 
    Structures (FFEMS) 38(8) (2015): 948-959.  
    150. Pendhari, S.S., Mahajan, M. and Kant, T. (2017), Static analysis of functionally graded laminates according to power law 
    variation of elastic modulus under bidirectional bending, International Journal of Computational Methods 14(5), - . 
    151. Kant, T. and Punera, D. (2017), A refined higher order theory for statics and dynamics of doubly curved shells, 
    Proceedings of the Indian National Science Academy 83(3), 611-630.  
    152. Punera, D. and Kant, T. (2017), Free vibration of functionally graded open cylindrical shells based on several refined 
    higher order displacement models, Thin-Walled Structures 119C, 707-726. 
    153. Punera, D. and Kant, T. (2017), Elasto-statics of laminated and functionally graded sandwich cylindrical shells with two 
    refined higher order models, Composite Structures 182, 505-523. 
    154. Punera, D., Kant, T. and Desai, Y.M. (2018), Thermo-elastic analysis of laminated and functionally graded sandwich 
    cylindrical shells with two refined higher order models, Journal of Thermal Stresses 41(1), 54-79.   
    155. LomtePatil, Y.T., Kant, T., Desai, Y.M. (2018), Comparision of three dimensional elasticity solutions for functionally 
    graded plates, Composite Structures 202, 424-435. 
    156. Punera, D. and Kant, T. (2019), A critical review of stress and vibration analyses of functionally graded shell structures, 
    Composite Structures 210, 787-809, Elsevier.  
    157. Alam, M., Mishra, S.K. and Kant, T. (2020), Scale dependent critical external pressure for buckling of spherical shell 
    based on nonlocal strain gradient theory, International Journal of Structural Stability and Dynamics, doi: 
    10.1142/S0219455421500036. 
    158. Sawarkar, S., Pendhari, S., Desai, Y. and Kant, T. (2020) Electro-elastic analysis of simply supported functionally graded, 
    laminated and sandwich piezoelectric plates, International Journal for Computational Methods in Engineering Science and 
    Mechanics (Taylor & Francis) 21(6), 312-330,  DOI: 10.1080/15502287.2020.1841333                                                      
    159. Punera, D. and Kant, T. (2021), Two dimensional kinematic models for CNT reinforced sandwich cylindrical panels with 
    accurate transverse interlaminar shear stress estimation, Thin-Walled Structures (Elsevier) 164, July 2021, 107881. 
    160. Punera, D. and Kant, T. (2021), An assessment of refined hierarchical kinematic models for the bending and free vibration 
    analyses of laminated and functionally graded sandwich cylindrical panels, Journal of Sandwich Structures and Materials 
    (Sagepub) [IF:5.015], First Published March 13, 2020; https://doi.org/10.1177/1099636220909826, 23(6), 2506-2546. 
    161. Sayyad, A.S., Ghugal, Y.M. and Kant, T. (2022), Flexure mode, thickness-shear mode and thickness-twist mode 
    frequencies of laminated composite shells of double curvature, Composite Structures, 291, 115577. 
    162. Sayyad, A.S., Shinde, B.M. and Kant, T. (2023), Hygro-thermo-mechanical analysis of sandwich shallow shells 
    considering the effects of transverse normal strain, Journal of Thermal Stresses, 46(7), 639-671. 
    163. Shiyekar, S.M. and Kant, T. (19 Dec 2023), A study on anisotropic behaviour of functionally graded plates by higher order 
    refined theory, Mechanics of Advanced Materials and Structures, DOI: 10.1080/15376494.2023.2266825.  
    164. Sayyad, A.S., Shinde, B.M. and Kant, T. (March 2023), Effects of transverse normal stress on hygrothermomechanical 
    analysis of laminated shallow shells, AIAA Journal,  61(5), 2281-2298, DOI:10.2514/1 J062169. 
    165. Sayyad, A.S., Ghugal, Y.M. and Kant, T. (2023), Higher-order static and free vibration analysis of doubly-curved FGM 
    sandwich shallow shells, Forces in Mechanics 11,  100194, https://doi.org/10.1016/j.finmec.23.100194. 
    166. Sayyad, A.S., Ghugal, Y.M. and Kant, T. (2024), Quasi-3D flexure analysis of laminated composite plates resting on 
    elastic foundations using higher-order displacement model, Progress in Engineering Science, 100005.